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Identification methods for nonlinear stochastic systems
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Model identifications based on orbit tracking methods are here extended to stochastic differential equations.
In the present approach, deterministic and statistical features are introdadbd time evolution of ensemble
averages and variances. The aforementioned quantities are shown to follow deterministic equations, which are
explicitly written within a linear as well as a weakly nonlinear approximation. Based on such equations and the
observed time series, a cost function is defined. Its minimization by simulated annealing or backpropagation
algorithms then yields a set of best-fit parameters. This procedure is successfully applied for various sampling
time intervals, on a stochastic Lorenz system.
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[. INTRODUCTION erning equations. In this paper, we focus on this so-called
dynamical noise or, otherwise stated, we are interested in the
In various areas, such as geophysics, engineering, conifentification of stochastic differential equatiof$3—15
puting as well as economics or biological sciences, identifiWVithin the context of parametric models. In an earlier paper
cation techniques are used to build directly from experimenl16], we considered a purely statistical approach, which
tal data, models which best reconstruct measurenj&nts]. CO.UId identify the parameters even for significant naise am-
For parametric models, this inverse problem generally repl'FUde _and for sampling time interval greater than th? corre-
duces to the optimization of a cost functigh This quantity, lation gme. The datha set, hho(;/vever, Waéshnecessalilly qﬁ'te
which determines the agreement between experiment adarg'fl- gcontrastk,)t fa_mebt 0 dpropﬁse ere wor iw't a
model, is selected according to the phenomenology and thnaller data set, but it is based on the assumption that mea-
available experimental data. For instance, the function surement s_ampllng time s small compar_ed to the system
may be defined as the Euclidean distance between Observ(éharactenstlc time. In this context, statistical variances re-
tions of a given vector field and its respective prediction.":"’“n.?1f weak ?‘mﬁ"tuge and tPe class;::aclj btz)ackpdropagatlt())_n
Note that the predicted quantity is, generally, an implicit"’lgokr_It m or S|mdu zte ﬁnnealngfmet r? Dased on O_rl_h'F
function of model parameters since it is computed through dracing Is extended to the case of stochastic systems. This
numerical integration of the parametric model. requires severallmodlflcatlonﬁ smqe thg hotion of deter-
On general grounds, predictions or characterization pro[‘nInIStIC true orbit is lost andii) noise directly affects the

cedures are sensitive to the presence of noise. This effect gynamms. Finally, an appropriate cost function, which con-

generally studied in the framework of the so-called observalains both deterministic and statistical features, should be
tional (i.e., measuremennoise problenj2—4]. In this case defined. This new cost function will be then introduced into

the dynamics itself is not altered but noise is added to mes" OPtimization procedure based on backpropagation or

surements because of experimental inaccuracies. Varimfému'ated anr_leallng '_“ethOdS- .
The paper is organized as follows. In Sec. I, we formalize

meang 2—4] of removing this type of noise may be consid- . : o
s2-4 g yb y the dynamical noise problem and we recall how it is related

ered [19]. Within the context of parametric deterministic . . ;
models, the backpropagation algoritiig)6] allows, even in to the_stochastlc equation theory. In order to model_ the time
ﬁgolutlon of ensemble averages and variances, linear and

the presence of measurement noise, an efficient and accur i i e dains 1

computation of gradients of the cost function with respect tgeakly nonlinear approximations are proposed in sec. lIl.

model parameters. This technique may thus be reliabl his approa_ch, n par'uqular the closgre hypothesis of the
eakly nonlinear case, is then numerically tested on a sto-

coupled to an improved Newton proced(irg to search for ; i A
P P P i chastic Lorenz system. In Sec. 1V, an identification procedure

the minimum of function7. Contrary to the classical one d ibed based p ; ining d .
time-step algorithm, this approach does not assume that sarfy. described based on a cost functigreontaining determin-

pling time and discretization time are equal and it is IeséStiC as We." as sta_ti;tical aspects. A .simulated annealing
sensitive to measurement no{$&d. The simulated annealing technlqude fmds a minimum of fugctlo%r];lf enshembtl)e aver- K
procedurd 9,10], constitutes another strategy to find a mini- ages and variances are assumed to follow the above weakly
mum of 7. This latter method, which is more time consum- nonlinear equations. For the linear approximation instead a

ing than the backpropagation algorithm, may be applied t ackpropagation algorithm is used. In Sec. V, results of the
Ica?ses in which Ioc%l r%ir?imla aregprelsent y PPl (%entification method are discussed on the specific case of a

Model identification is much more intricated when noise Stochastic Lorenz system.
is built in the dynamics itself11,12, i.e., added to the gov- Il PROBLEM FORMULATION
Consider a model characterized Wy variablesx; (i

*Present address: Service de Biophysique, Laboratoires Innothera; 1,...N), which satisfy a set oN nonlinear Langevin equa-
7-9 Av. F. V. Raspail, 9411 Arcueil, France. tions
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dXi
—=Fi(X1,..

at Mp)+ 7 6(1), (1)

.,XN;/.L]_,...

depending orP parametersu; (j=1,...P). Functionsg;(t)
stand for uncorrelated normalized white noises

(0i(1) g;(t"))=25;8(t—t"), 2

and 7; for noise amplitudes. The quanti; denotes the
Kronecker symbols(t—t") the Dirac distribution and) an
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analytical function of parametera. Numerically, PDF
PX(x,t,) may be evaluated by generating many realizations
of the same initial conditionx®® [20]. Such a brute force
method can hardly be put into practice, since it requires a
considerable number of simulations of Ed), an intensive
computational effort even for a simple stochastic equation.
However, when sampling time intervalis small compared

to the characteristic correlation time of the stochastic system,
it is possible to get the variances with respect to time. In such
a case, an alternative cost function may be defined based on

ensemble average. The proposed identification procedure rgese ingredients.

trieves, from a data set

S={x1t,i=1,..N|t,=kT,k=1.M+1}, (3

Ill. LINEAR AND WEAKLY NONLINEAR APPROACH

A. Theoretical aspects

produced byM +1 measurements performed at every sam-

pling time intervalT, a set of best-fit values for parameters ! ) ) :
JpiT1,...,7n). The data sef may be altered by ated with PX(x,t,) remain of weak amplitude. During the

EZ(/.L]_,...

When sampling timd is small enough, variances associ-

measurement noise as well. In the following, this type ofinNteénvalty<t<ty., the stochastic orbit, thus, stays close to
noise will be assumed weak compared to dynamical noise ifhe deterministic orbiki™ defined by

order to focus on this particular case.

Since dynamical noise plays an intrinsic role in Langevin
equations(1), stochastic and deterministic behaviors should

dx? o
TzFi(X ;/J,]_,---,,U«P)a (8)

be introduced in the reconstruction algorithm both at the ob ) _

level of cost function7 and optimization procedure. More With Xi(t) =x"{t). During the same interval, the stochas-
precisely, function7 should rely not only on the distance tic variablesy=x—x% are governed by the Langevin equa-
between observed das?®{t) and predicted orbit, as in a tions

purely deterministic evolution, but also on statistical devia-
tions from this predicted orbit. It is thus, natural to consider

the probability density functiofPDF) P(x,t) of finding the
system at positiorx when measured at time This PDF is
governed by the Fokker-Planck equatidrs,14]

P« d N PP(xt)
= PP 2 A,
4

which contains both a deterministic aspéfitst right hand
side (rhs) term] and a stochastic onsecond rhs terimAs a
first attempt, one would like to minimize cost function

1M 1
J@)== 15 2 Pt 0) )+ g 2 7 (9)

in which P¥(x,t) denotes the PDF satisfying E@f) within
time intervalt,<t<t, ., and initial condition

PX(X,t) = S(x— X ty)) (6)

when no measurement noise is present, or else

_[X_XObS(tk)]z)
2D

Kx b o - p<
PX(x,ty) \/277_Dex (7)

with measurement noise of varianBe This cost function is

dy;
d—t'=Gi(y,x°k;M1,...,Mp)+Tiei(t), 9)
where
Gi(y, X% 1, ....up) =Fi(y+x% uq, ... ,uP)
—FiO® g, opmp). (10

At time t,, the stochastic variables=x—x¢ verify, in the
absence of the measurement noise, the initial condition
y(t,) =0, or else satisfy a Gaussian probability distribution
of varianceD when noise is present. We assume that quan-
tities y; remain small during periodi,<t<t,.,. At zeroth
order, Eg.(9) may then be linearized as

dy;
ar - Yii (DY + 76i(1), (11
where
IF; ok ok
’}/IJ(t): (Xl (t)i"'va (t);M:L"'"MP)' (12)

L;'Xj

Probability density Pl((y,t) associated to the linearized
Langevin Eq.(11) approximates the nonlinear omﬁ(y,t)
=PX(x%+y,t) associated to Eq9). However, it is a much
easier quantity to compute since it satisfies a Ornstein-

clearly related to the logarithm of the maximum likehood Uhlenbeck equatiofl3,14

[12] with the proviso that an extra term is added to tenta-
tively minimize noise amplitudes. Unfortunately, the optimi-
zation of Eq.(5) is practically impossible except in the sim- ot
plest cases in which the probability density is a known

aPI(y.1) K3 .

FPPI(y.1)
=—Z 7’ij(t)o7 ,[yjP.k(y,t)]JrE 7'i2—| 4
1) Yi i=1

ay?
(13
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with a condition at time,=kT similar to aé function or a  the nonlinear contributiond; in the dynamics, i.e., by using
Gaussian function with zero average. Such an equation maye exact Eqs(16) and(17). However, the exact PDF is now
be analytically integrated irt,<t<t,.,, the probability no more Gaussian, but reads

density function remains Gaussigh4]| with zero average

and variancesr;;(t) governed by Pu(y,t)=Pg(y.(y),oij) + e(t) Pna(Y,) (19
do wherePg denotes the Gaussian PDF with ensemble average
d_'J — Hikj(UEq)' (14) and variances d?,,, Pyg(Y,t) the normalized non-Gaussian

remaining part and(t) an amplitude that quantify how far
the PDF if from being Gaussian. In the lineagirae e(t) is
with initial conditionsar§ (t,) =D &;;, where precisely zero. More generally an approximation for small
time may be done to solve the nonlinear Fokker-Pla(sele,
2 for instance, Ref[14]) in which the Gaussian part is shown
H"(qu) 2 y'”(t)onﬁz Vin(Doni+ 2857 (19 to be still the leading order term. It is thus reasonable to
assume that, for a larger time period, the Gaussian part is
Variances that satisfy Eqé14) and (15) are expected to predominant in its contributions to term{;) or (N;y;).
generically increase in an approximate exponential manneNote that, in Eq.(19), variables(y), oj; obviously do not
When T becomes large, such an evolution clearly departdollow a linear evolution, in particulaKy) may be different
from the dynamics of the fully nonlinear problem. However, from zero. In a way, this reasoning is quite similar to the one
a better approximation may be found that reintroduces nonemployed to derive amplitude equations in the theory of de-
linear contributions in a weakly nonlinear phase and thugerministic nonlinear extended systems; one assumes that the
remains valid for a longer time period. First, the governingmain term has the same spdbtere the phase spgogepen-
equations for ensemble averadg;) and variancesoy; dence as in
=(y,y;) [21] are computed in the fully general proble®).  a general linear evolution but unsteady amplitudesre
The computation of time derivatives ¢§;) andoy; leads to  (y)(t), oj;(t)] are governed by nonlinear evolution equa-
an integral in which appears the partial time derivative of thetions. These amplitude equations are easily derived here by
PDF P{(y,t). Replacing this time derivative by space de-computing(N;), (N;y;) and (N;y;) with the approximate
rivatives using the Fokker-Planck equation, it is readilyPg(y.(y),oij) rather than the tru®,(y,t). Such contribu-
found, after an integration by parts, that tions thus become only functions ¢f), oy; . This closes the
hierarchy since everything is now defined in terms(ypf,

d(y) o;i - When functionsG; are polynomials or power series in
I 2 Yip(D(Yp) +{(Ni), (16) y,”one gets |
do;: N;=> Tis(t)y,ys+ (higher-order termis  (20)
r,s

d_tllzzp: yip(t)o'pj+§p: '}’jp(t)o'pi+25ij 7-i2+<Niyj>

where coefficients depend on the deterministic oxSi(t)
+(Njyi), (17 [e.g., T}<(t) in Eq. (20) stands here the Hessian & ].
Quantities(N;), (N;y;), and(N;y;) may then be expressed
in terms of various moments which, in the Gaussian approxi-
mation, can ultimately be written in terms of variances and
Ni=Gi(y. X% i1, op) = 2 Yim(DYm (18)  ensemble averages. For instance, in the Lorenz sy&tem
m Sec. Il B), one has the exact relations

where functions

denote the purely nonlinear terms contained in functions N _E T (t
Gi(y). To get the above relation, the probability density (Ni)= rd irs(D s,
function and its various gradients are assumed to vanish in

phase space at infinity. Similar manipulations can be per-

formed for higher-order moments, e.gy;y;ym); an infinite <Niyi>+<NjYi>:§ Firs(t)<Yry5yj>+r§; Lirs(OCYrYsYi)-
hierarchy is hence defined for the time evolution of overall ’ ' (22)
moments. This situation is akin the one found in isotropic

turbulence. Similarly, a hypothesis should be used to closén the weakly nonlinear phase, the contribution of the non-
the hierarchy. Anad hoc Gaussian assumption is generally Gaussian part of the PDF of the three-point correlations is
performed for higher moments in turbulence modeling. Inneglected, which reads

this work, we follow this path though this hypothesis is bet-

ter justified here. More precisely, foF small enough, we (Ve =y (Ys=(¥) (Yp=(¥p))) =0, (23)
neglect the nonlinear terniy; and the dynamics is reduced
to Eq. (14) since the linear equation fdy) is trivially satis-

fied in that case, the average valiye being initially zero. (VrYsYp) = (V) Tspt (Ys) Orp+ (V) Ors— 2¢Y e NYs)(Yp)-
For largerT, one may relax this hypothesis by introducing (24

(21)

or equivalently
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As for amplitude equations in bifurcation problems, the va-g=10, r =28, b=2.666 (caseA) or c=19.03,r=7.63,b
I|d|ty_ of this weakly nonlinear app_roximation dep_e_:nds on the_3 g7 (caseB) which, respectively, correspond to a chaotic
nonlinear system and on the orbit. For supercritical bifurcazn 5 fixed point rgime for the Lorenz deterministic system.
tions, it is quite appropriate for all times but for subcritical For most examples, the noise amplitude is taken torbe
bifurcations, it is only locally valid. As in bifurcations prob- — 40 (see Fig. 1 Mor,eover in order to focus on the dvnami-
lems, we do not attempt to define precise theoretical bounds ! 9. ! yn

al noise problem, dat& is assumed free of observational

for T. They are clearly dependent on the noise amplitudes as_. . . .
well as on the finite time Lyapunov exponents of the deter!10!S€ ©=0). Note that, we tested our original algorithm on

ministic system related to the Langevin equation we studyin€ Lorenz system because it is the paradigmatic example of
However, a quantitative relation between the maximal samionlinear dynamics. o

pling time T and the amplitude of the noise seems diffi- The test of the closure assumption is performed as fol-
cult, not to say impossible, to obtain. Practically, given alows. First, the deterministic orbix®(t) [resp. variances
parametric model, one should play with it to determine howoij(t)] is obtained by integration of E¢8) [resp. linear Eq.

far one can push this assumption. In the following section(14) or weakly nonlinear Eqgs(21)—(24)] starting from a

we did this search for the Lorenz system and we showed thaiven initial conditionx°Y0). In the second stageR>1
nonlinear effects such as saturation can be obtained in thigalizations of the stochastic systefh) are numerically

higher-order approximation. simulated with the one time-step numerical algorithm ex-
plained in[18] with a time stepAt=0.0001. Using thes®&
B. Results of the closure assumption different values o«°P{t), an histogranti.e., a PDF is ob-

The above linear and weakly nonlinear a roximations:[ained that approximateB(x,t). It is checked thata) the
y PP integration stepAt is small enough to not affect the PDF

have been tested on the particular data set produced byrgsults(see Fig. 2 and (b) the histogram is well approxi-

stochastic Lorenz systef.7] mated with’R=1000 realizationgsee Fig. 3. Once these
dx, numerical checks are done, such a histogram, computed with
EZO'(XZ—Xl)-FTﬁl(t), R=5000 realizations is shown on Fig. 4, for two initial
pointsx°*{0) on the “attractor” and two different sampling
dx timesT=0.1 (solid line) andT=Q.5 (dashed ling The time
2 [X 1+ Xo— X1 Xz+ 70,(1), necessary for the loss of Gaussianity to occur, depends on the
dt phase space region; it is not surprising and may be clearly
related to finite time Lyapunov exponents. Varianeggt)
dxs of y(t) =x°®{t) —x%(t) can also be derived from tHR dif-
dt b3 +Xox1 4 765(1), ferent realizations ok°®{t) and compared to the predicted

values of the closure assumption. On Figs. 5-8, the variation
in which parameters, r, andb are constant coefficients. We of o4(t) with respect to time is shown: solid lines represent
used this system because it is a paradigmatic example ofthe linear approximation results, dots correspond to the non-
nonlinear system. In the reconstruction community, or mordinear approximation, averages overrealizations are indi-
generally in the nonlinear system community, much workcated usingR = 1000 (squares and R=5000 (circles. As
and ideas have been worked out using this system earlier oseen in Figs. 5 and 6, the linear approximation behaves rea-
In this numerical check, coefficients are taken to be equal tsonably well for caséh and =20 (resp. 72=40) until T

031107-4
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FIG. 2. Influence of the discretization time step FIG. 4. Histogram of variable; computed foro=10, r =28,

At(10°2,10 3,10 4,10 ®), on the PDF ofx, computed at timer
=1. Computations were performed f®=5000 and for case A,
72=10 and initial conditionx; = — 3.6, X,= — 6.9, X3=7.9.

<0.1(resp.T<0.08 while the nonlinear approximation may
be used for larger time intervals, i.eT,<0.25 (resp. T

<0.12. Even for larger times, the weakly nonlinear ap-

b=2.666, andr?>= 10 usingR="5000 data point$a) For the initial
condition x; 3.2, Xx,=1.5, x3=28.2 and timesT=0.1 andT
=0.5(b) For the initial conditiorx;= —3.6,x,= —6.9,x3=7.9 and
timesT=0.1 andT=0.5.

IV. THE IDENTIFICATION METHOD

A. The cost function

proach is acceptable. As previously mentioned, the quality of

the approximation depends on the position of the initial con-

ditions (see Fig. 7 as well as on the parametdsee Fig. 8

As a conclusion, it is possible to use the linear approximation
for oy; if T is small enough or the weakly nonlinear one for
larger values. Clearly, this latter possibility is also limited to

a range of time interval3.

0-15 T T T T
A
PR ---- R=300
/" \-a —-— R=700
o1 | I3 Y\ —— R=1000
4
I3 \
/ \
\
{ N
,,\
WY
0.05 | i?, M |
J W
) :
,f \
" /’ \\
A \\\
0 o ,:fp:’I,J L 1 R
-25 -15 -5 5 15 25

FIG. 3. Rescaled histogram of variabbe, computed for
o=10, r=28, b=2.666, and =10 and the initial condition
X1=—3.2, X,=1.5, x3=28.2; for R=300 (dashed ling R=700
(dot-dashed ling R=1000(solid line) realizations.

In a purely deterministic case, the cost functj@is often
based on the distance between de¥q(t,, ;) and predicted
deterministic orbitx®(t,, ), i.e.,

1 M
T@= 37 2 Xt ) -t )2 (29

Contrary to this classical choice, a cost functigris intro-
duced here for the Langevin Ed4), based on the numerical
probability density of the stochastic variablg(t, 1)
=X(ty+1) —X%(txs1). This function contains a deterministic
part through the noise-free solutioff(t) as well as a sto-
chastic part through variablggt). If T is small enough, the
linear approximation holds and the Gaussian FFEifFof the
Ornstein-Uhlenbeck process may be used

M
- gl In PEOCP s 1) = X% (tes 1) tir 1)

2|+

Ja)=

_|_

(26)

Z| -
_.MZ

=

A version that is easier to implement and that can be ex-
tended to the weakly nonlinear regime is considered here.
Let us first divide the phase space region that contains the
observed dat& into U domainsy, (u=1,...;U) and denote

by ai;(x,T) the variance computed startingxaand evolving
during a time intervall. If the numberN,, of data points in

V, is large enough, the averaged variance over the dowgain

031107-5
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nonlinear -
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FIG. 5. Case A and“=20. Quantityo4(t)
3 computed, starting from the initial condition on
Sosl i the attactorx;=—3.6, X,=—6.9, x3=7.9 aver-
S aging overR=1000 realizationgsquarey and
R=15000 (circles, using the linear approxima-
0.2 | 4 tion (solid), and the weakly nonlinear approxima-
= tion (dots.
0.1} E
0%‘ 0.05 0.1 0.15 0.2 0.25

Time (s)

Using these constraints, the cost functi@n
J aij (X, T)P(x,t)dx
Yu

(27) - "
f P(x,t)dx j_glizj aj; Jij (30
VU

) _ is introduced where th&i‘} are weight coefficients and
may be replaced by the following discrete term:

1 1
iE o (tes 1) 29) Jij= Wu; (Tij(tk+1)—,\Tu§ XUt 1) =X (s 1)]
Ny 7, . , ! “
2
b k
in which the symbol/, means that sums are performed over XX s 1) =Xt ) 1| (31

all pointsx?k(tk) located in),. Moreover, wherN,, is large

enough, the following equality applies: When dynamical noise amplitudes are quite small, vari-

ancesoj; become negligible and cost functig80) is similar
iz o (t )Niz [Xpbs(t )—ka(t )] to a least-squares functid@5) used for deterministic equa-
N R T R tions. When noise amplitudes become large, statistical as-
pects predominate and a cost function, such as(&), is

b ok ! R . A
XX ) =X (1)1 (29 jrrelevant; during time interval, variances may significantly
25 _ . . T T
linear
nonlinear -
R=1000 [
R=5000 O
2t J
15 FIG. 6. Case A and?=40. Quantityo(t)
g i T computed, starting from the initial condition on
S the attactorx;=—3.6, Xx,=—6.9, x3=7.9 aver-
g aging overR=1000 realizations(squarey and
1F . R=15000 (circles, using the linear approxima-
tion (solid), and the weakly nonlinear approxima-
tion (dots.
05} -
0 9 N 1 L
o 0.05 0.1 0.15 0.2 0.25

Time (s)
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g O FIG. 7. Case A and?=40. Quantityo(t)
§ computed, starting from the initial conditiax,
g015¢ B ] =-8.1, x,=—10.7, x3=22.9, averaging over
g R=1000 realizations(squares and R=5000
_ (circles, using the linear approximatiofsolid),
01 -~ ] and the weakly nonlinear approximati¢eots.
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change compared to the time variation of the deterministialuea; and computing the associated cost functifn the
orbit x. However, cost functiori30) takes this aspect into  method consists in iterating three basic steps. Namely, at
account. Note that, if the numbeN, is too small—  gach jteratiori, one picks up the specific val@_; of pa-

convergence must be checked case by case by modifying the etera which was computed at the previous iteration

total number of measurement points, i.e., by using part of the . : . .
. Lo e =1. Anew guess valua is obtained stochastically using the
data setS—the constraint oV, is not considered anzti“j d y g

" Gaussian random distributio®(a,i)=(27¢;) Y4[—(a
=0 holds(on the reverse casey;=1). —a,_1)%1/2¢;} whereg; is the so-called temperature param-
eter at iteration. The simulation of Eqs(8), (21)—(24) is
thereafter performed with this new parameieand the value

The method of simulated annealing is used to find theof the cost function denoted Ly is obtained as a byproduct.
global minimum of a given functional just as the cost func-If <. _, then valuea; is set toa at iterationi. In the
tion 7, which implicitly depends on parametarthrough a reverse cas&,; keeps the value at the previous iteration, i.e.,
set of evolution equations acting as dynamical constraintsa;=a;_, with a probability 1-h;, or elsea; becomes equal
Here this technique is applied to minimize cost functi®@)  to a with a probabilityh;. The probability of acceptandeg
with the constraint that the deterministic ork¥(t) satisfies is a major ingredient in the simulated annealing procedure
Eq. (8) and the weakly nonlinear variances satisfy E@4)—  and is defined a$,=exd — (7 — 7 _1)/ ¢i]. Clearly, the
(24). This procedure is an extension of the classical Montecrucial step of the simulated annealing procedure lies in the
Carlo method[9,10] since it is based on a probabilistic choice ofh; or, more precisely, of the temperatupe at each
search of the global minimum. After picking up a randomiterationi. The simplest evolution has been considered here;

B. Optimization algorithm: The simulated annealing

0.3 - T T T
linear
nonlinear -
3288 0
025f © -
02y g 8 , _
o FIG. 8. Case B and“=40. Quantityo4(t)
g e computed, starting from initial conditions
2 0.15 - 1 x,=—3.6, X,=—6.9, X3=7.9, averaging over
> 8 R=1000 realizations(squares and R=5000
A i (circles, using the linear approximatio(solid),
01 e T and the weakly nonlinear approximatiétots.
0.05 | E
o%‘ 0.65 0f1 0.'15 0.2

Time (s)
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a linear decrease with iteration indexThe decrease should 1

be slow enough;¢ must not evolve faster thanp, Gjj(T)= N_E [XPP Kt 1) =X (e ) Xt 1)

= ¢o/In(i) with ¢q. For details of the general method the U

reader may see RgB]. Clearly we want here to demonstrate - x?k(tH )] (34)

the accuracy of the overall method. As a consequence, we do

not try to accelerate the simulated annealing convergence by explicit in terms of parametéx because of Eg(32). On
using more soph!stl_cated temperature evolutions. In th|s_pqhe contrary, quantityr;;(x,T) is an implicit function of
per, this method is implemented only fqr the weakly non“n'parameters via Eq14). All previous approximations may be
ear Egs(21) and(22). It could bea priori employed for the  yomaved. In particular, the weakly nonlinear problem may be

linear case as well. However a technique requiring €SS NUpyoquced within the backpropagation method but the sim-
merlcal efforts, is presented in the following section for theplicity and efficiency is then lost since the problem would
linear case; the backpropagation procedure. then contain nonlocal dependences not only in variables
o _ ) xio"(t) as for the pure deterministic case, but also depen-
C. Optimization algorithm: The backpropagation procedure dences on variances;;(t). In that instance, the simulated
For deterministic equations, another iterative methodannealing performs much better. In the simplified setting de-
known as preconditioned limit memory algorith(RLMA)  scribed above, the number of direct and backpropagated
algorithm[7] was used to search for the minimum of a func- equations are N+1)NXU. The obvious drawback is
tional as in Eq.(25) with constraints as in Eq8). This  clearly the reduced range of time intervialvhere it can be
approach, which searches for local minima, is less generapplied. In this framework, we briefly describe the method
than the simulated annealing. However it converges muchvhen it is extended to the case of dynamical noise.
faster. In this section, a similar method is introduced for the The gradient of7(a) with respect to the various param-
stochastic problem. As for the pure deterministic case, it i®ters ina is actually the sum of the contribution of each
again a much faster algorithm than the simulated annealingieighborhood), separately. As a consequence, below we
The PLMA algorithm is a generalized Newton method consider only one neighborhood. The cost function thus
that looks for minima of7 by computing the gradient and reads
Hessian of7 with respect to parametar. An efficient com-
putation of this latter quantity is, thus, crucial to apply the
PLMA algorithm especially for identification problems that ju:iEj “ﬁ[aii(xﬁvT)_Gﬂ(T)]z' (39)
are generally ill conditioned. For a deterministic system as in '

Eq. (8), this quantity can be obtained by a backpropagation]-he de - — -
. . pendence with respect to paramater partly explicit
me'thod. Th.'s procec.iure,' "”OV.V”. to be quite rpbust to ops.erfhroughGiL}(T), partly implicit sinceq;(x;,T) depends on
vational noise, consists in defining a companion dEtermlmsthese arameters through the direct probldd and (32)
tic problem (the adjoint problemto system(8). A unique P 9 P X

simulation of theN so-called backpropagated equations is;l;ggutz:?r?kpfp:r?eargﬂgergcl)_c;dr:rne ir;;ndles this difficulty by in-
sufficient to compute the gradient over all parameters. A 9ag grang
similar procedure proposed here for stochastic equations im- [

poses several assumptions. First time intefivad assumed L=T+, ' dt %—Hij(apq)

. . . Yij(t), (36
small enough so that the linear EG4) is appropriate for the i Jt=0

evolution of variances and the explicit relation
ok ob ob where the multipliersy;;(t) are introduced for &t<T and
X (O =Xt + Fi(xPt) g, omp)(t=t), (32 j=1,..N. Whenx(t) anda;j(t) satisfy the direct problem
. L ) (14) and (32), one gets7= L for any choice of multipliers
instead of Eq(8), holds for the deterministic paxf* during Y;; (1), for 0<t<T. Moreover,57 the first-order variation of

t=<t<ty.;. This is understood as follows. For the case ofy,a cost function with respect to the variation of parameters
large dynamical noise, variances are changing much mor | then reads

than the deterministic orbi® and hence, Eq32) is a good
approximation forx°. In the reverse case of small dynami- oL T or

cal noise, our procedure is strictly equivalent to the one time- 8J= 2, — da,+ J dt>, ——— Saij(t), (37
step method. The case of an almost deterministic system N =0 11 doyj(t)

where EQ.(32) is not valid, can be treated by a classical

backpropagation methd&]. As a second approximation, the Where da, represents the variation of parametgr, and
first sum in Eq(31) is approximated byr;;(x;,T), wherex; ~ 607;(t) the first-order variations of variables;;(t) with
stands for a point in the neighborhody. This means that da;. The first term in Eq(37) denotes the explicit depen-
the variance is not changing much with position in the neigh-dence ona, while the second concerns the implicit depen-

borhoodV,. Function 7! in Eq. (31) is now reduced to dence that is difficult to compute. Note that a term, such as
dLl1dYj;(1), is identically zero whemwr;; (t) verifies the direct
Ji(@=[oij(x;,T)=G{(T)]?, (33)  problem. At this stage the multiplier§; (t) are still arbitrary.
The backpropagation procedure consists in choosing these
where function free variables in such a way that
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oL TABLE I. Deterministic/Stochastic method: identified values for
Z ﬁéaij(t)=0 (38) M=1000 and 4000 measurement points. Exact values 10R
1 doyi(t) —28p=2.667=1).
hoIds for any allowed variation8o; (t) [22]. This constraint . Deterministic method Deterministic method
defines the backpropagated problem, which is a dynamical T=0.1 (M =1000M = 4000) T=0.4 (M=4000)
system for multipliersy;;(t) solvable backward in time. For
details, the reader may see Rdf-8]. Integrating this new o 7.384/6.986 0.7096
dynamical system thus provides the Lagrangian multiplier®R 26.41/26.46 29.36
Y;j(t). When such choice is made fof;(t), the variation b 3.896/3.908 4.253
8J is then easily computed. Apart from the explicit depen-r
dence, the implicit part becomes Stochastic method Stochastic method
ar o 10.12/9.990 9.818
8T=2 o= oay 39 R 28.57/27.45 27.85
' b 2.257/3.222 2.678
with T 0.979/1.029 1.091
L T IH; |
da tzodtizj a, iV (40 T-1 (.88, 27.72, 2.7and 2= 0.99. The cells/, are ob-

tained by dividing the phase space20<x<20, —30<y
The method is thus identical to the one used for the deter<30 in five intervals and €y<40 in three intervals.
ministic case, but it is extended to the stochastic problem by
using the deterministic linear Eq14) for variances and B. Results of backpropagation procedure
avoiding direct use of governing equations. This trick then

allows to use the usual procedure. Our extended backpropagation approach is first tested us-

ing a data setS produced by a stochastic Lorenz system
corresponding to case A with a noise levél=1. Table |
V. ATEST CASE: STOCHASTIC LORENZ SYSTEM presents a comparison between the identification results ob-

The two algorithms have been tested on a stochastic Ld&ined by (i) a purely deterministic backpropagation ap-

renz system. Note that the equivalent deterministic systerRfach, which is a rather robust technique with respect to
may be chaotic or may correspond to a fixed point regime, Measurement noise, arti) our stochastic backpropagation
method. When the data s8tis sampled every time period

A Results of the simulated annealin T=0.1, the parameters values are satisfactorily evaluated
' 9 with the stochastic method for bo = 1000 and 4000 mea-
We compute the optimal parameters using the simulatedurement points. Indeed, the identified values fluctuate
annealing procedure within the weakly nonlinear approximaaround the correct ones. On the contrary, the deterministic
tion. The input data sef is provided by the integration of method does not converge towards the exact quantities when
case A with a noise amplitude?=40 and initial conditions increasing the number of measurement points.
(—3.6, —6.9, 7.9, which is sampled aT=0.1. This sam- When the data sef is sampled withT=0.4, the deter-
pling time corresponds to the interval for which the linear ministic method is far away from the correct value even with
approximation fails while the nonlinear one is still valleig. = M =4000 points. Paradoxically, our method behaves even
6). When using such a data set of 100 poifrsspectively, better forT=0.4 than forT=0.1. This can be accounted for
1000, the algorithm provides the following best estimate as follows: forT=0.1 and noise amplitude?= 1, variances
(10.7, 27.1, 2.0p with 72=37.54, and respectively9.8,  dynamics is dominated by the noise term in Et4). The
28.2, 2.54 with 72=40.51. For a larger sampling tim&  part of the identification method devoted to variances is
=0.2 and 1000 measurement points, we still get a rathehence essentially affected by noise amplitude. For a larger
acceptable result(8.0, 25.0, 2.8% with 72=43.9. We sampling timeT=0.4, the cost function becomes more sen-
checked that these values are slightly dependentapthe  sitive to the other terms on the rhs of E§4). Consequently,
initial conditions for the data s¢23] and(b) the initial guess the other parameters directly influence the computation of
values for the parameters. These results are satisfactory amdriances. Thus, this improves predictions.
robust against noise, which is pretty strong in this case. Fur- For values of parameteks, R, andb corresponding to a
thermore, this is to be put in parallel with the results obtainedhonchaotic regime, the two methods provide quite different
from the identical data set by a simulated annealing proceresults for the time asymptotic dynamics. For a case in which
dure that uses the deterministic cost functi@3) and the (o=10R=20p=2.66) and a noise levef=5, the dynam-
deterministic equations. In that case the optimal set is founits may be described as a noisy “attractor,” which has noth-
to be (26.75, 39.8, 7.Pwith 1000 points, which is far from ing to do with a fixed point dynamics observed for vanishing
the correct values. The method works also for small noiselynamical noise. Usingl = 1000 measurement points and
levels: For instance, we used a data set produced by casesampling timeT=0.1, the classical deterministic method
with 7=1 and obtained with 4000 points and sampling timegives a fixed point dynamicso(=7.69R=19.03b=3.877
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=0). In the same instance, the stochastic approach providé€s<y<40 in three. We imposed;;=0 for i#j and for
a realistic behavior €=10.20R=19.93ph=2.557=4.95)  neighborhood$/, containing less than 50 points.
with a noisy Lorenz attractor.

For larger noise levels, e.gr=40 and a chaotic regime

(0=10,R=28, andb=2.66), the deterministic method fails. C. Conclusion
For M=2000 measurement points and a smaller sampling . . .
time (T=0.001), this deterministic method identifies We have proposed an identification method for stochastic

=20.76, R=16.94, andb=8.887, which simulates a fixed €duations. This procedure was tested with a data set pro-
point asymptotic dynamics. On the contrary, the stochastiluced with large dynamical noise; correct values were ob-
approach provides the valu@®.715, 28.27, 2.587and = tained while deterministic based approaches systematically
=40.92. For large dynamical noise, the stochastic method ifiled. Note that, most of this discussion needs only a slight
the only one capable to identify and then reproduce the cormodification to include a multiplicative noise term in Eg).

rect observations. In these computations, the phase spaéemore stringent constraint concerns the assumption that the
—20<x<20, in which the dynamics is observed, has beerN variables are his condition is appropriate as a first step and
divided in three intervals;-30<y<30 in five and finally  will be in future work.
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