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Identification methods for nonlinear stochastic systems
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Model identifications based on orbit tracking methods are here extended to stochastic differential equations.
In the present approach, deterministic and statistical features are introducedvia the time evolution of ensemble
averages and variances. The aforementioned quantities are shown to follow deterministic equations, which are
explicitly written within a linear as well as a weakly nonlinear approximation. Based on such equations and the
observed time series, a cost function is defined. Its minimization by simulated annealing or backpropagation
algorithms then yields a set of best-fit parameters. This procedure is successfully applied for various sampling
time intervals, on a stochastic Lorenz system.
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I. INTRODUCTION

In various areas, such as geophysics, engineering, c
puting as well as economics or biological sciences, iden
cation techniques are used to build directly from experim
tal data, models which best reconstruct measurements@1–3#.
For parametric models, this inverse problem generally
duces to the optimization of a cost functionJ. This quantity,
which determines the agreement between experiment
model, is selected according to the phenomenology and
available experimental data. For instance, the functionJ
may be defined as the Euclidean distance between obs
tions of a given vector field and its respective predictio
Note that the predicted quantity is, generally, an impli
function of model parameters since it is computed throug
numerical integration of the parametric model.

On general grounds, predictions or characterization p
cedures are sensitive to the presence of noise. This effe
generally studied in the framework of the so-called obser
tional ~i.e., measurement! noise problem@2–4#. In this case,
the dynamics itself is not altered but noise is added to m
surements because of experimental inaccuracies. Var
means@2–4# of removing this type of noise may be consi
ered @19#. Within the context of parametric determinist
models, the backpropagation algorithm@5,6# allows, even in
the presence of measurement noise, an efficient and acc
computation of gradients of the cost function with respec
model parameters. This technique may thus be relia
coupled to an improved Newton procedure@7# to search for
the minimum of functionJ. Contrary to the classical on
time-step algorithm, this approach does not assume that s
pling time and discretization time are equal and it is le
sensitive to measurement noise@8#. The simulated annealing
procedure@9,10#, constitutes another strategy to find a min
mum of J. This latter method, which is more time consum
ing than the backpropagation algorithm, may be applied
cases in which local minima are present.

Model identification is much more intricated when noi
is built in the dynamics itself@11,12#, i.e., added to the gov
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erning equations. In this paper, we focus on this so-ca
dynamical noise or, otherwise stated, we are interested in
identification of stochastic differential equations@13–15#
within the context of parametric models. In an earlier pap
@16#, we considered a purely statistical approach, wh
could identify the parameters even for significant noise a
plitude and for sampling time interval greater than the cor
lation time. The data set, however, was necessarily q
large. By contrast, the method proposed here works wit
smaller data set, but it is based on the assumption that m
surement sampling time is small compared to the sys
characteristic time. In this context, statistical variances
main of weak amplitude and the classical backpropaga
algorithm or simulated annealing method based on o
tracking is extended to the case of stochastic systems.
requires several modifications since~i! the notion of deter-
ministic true orbit is lost and~ii ! noise directly affects the
dynamics. Finally, an appropriate cost function, which co
tains both deterministic and statistical features, should
defined. This new cost function will be then introduced in
an optimization procedure based on backpropagation
simulated annealing methods.

The paper is organized as follows. In Sec. II, we formal
the dynamical noise problem and we recall how it is rela
to the stochastic equation theory. In order to model the ti
evolution of ensemble averages and variances, linear
weakly nonlinear approximations are proposed in Sec.
This approach, in particular the closure hypothesis of
weakly nonlinear case, is then numerically tested on a
chastic Lorenz system. In Sec. IV, an identification proced
is described based on a cost functionJ containing determin-
istic as well as statistical aspects. A simulated annea
technique finds a minimum of functionJ if ensemble aver-
ages and variances are assumed to follow the above we
nonlinear equations. For the linear approximation instea
backpropagation algorithm is used. In Sec. V, results of
identification method are discussed on the specific case
stochastic Lorenz system.

II. PROBLEM FORMULATION

Consider a model characterized byN variables xi ( i
51,...,N), which satisfy a set ofN nonlinear Langevin equa
tions
ra,
©2002 The American Physical Society07-1
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dxi

dt
5Fi~x1 ,...,xN ;m1 ,...,mP!1t iu i~ t !, ~1!

depending onP parametersm j ( j 51,...,P). Functionsu i(t)
stand for uncorrelated normalized white noises

^u i~ t !u j~ t8!&52d i j d~ t2t8!, ~2!

and t i for noise amplitudes. The quantityd i j denotes the
Kronecker symbol,d(t2t8) the Dirac distribution and̂& an
ensemble average. The proposed identification procedur
trieves, from a data set

S5$xi
obs~ tk!,i 51,...,Nutk5kT,k51...M11%, ~3!

produced byM11 measurements performed at every sa
pling time intervalT, a set of best-fit values for paramete
ā5(m1 ,...,mP ;t1 ,...,tN). The data setS may be altered by
measurement noise as well. In the following, this type
noise will be assumed weak compared to dynamical nois
order to focus on this particular case.

Since dynamical noise plays an intrinsic role in Lange
equations~1!, stochastic and deterministic behaviors sho
be introduced in the reconstruction algorithm both at
level of cost functionJ and optimization procedure. Mor
precisely, functionJ should rely not only on the distanc
between observed dataxobs(t) and predicted orbit, as in a
purely deterministic evolution, but also on statistical dev
tions from this predicted orbit. It is thus, natural to consid
the probability density function~PDF! P(x,t) of finding the
system at positionx when measured at timet. This PDF is
governed by the Fokker-Planck equation@13,14#

]P~x,t !

]t
52(

i 51

N
]

]xi
@Fi~x,t !P~x,t !#1(

i 51

N

t i
2 ]2P~x,t !

]xi
2 ,

~4!

which contains both a deterministic aspect@first right hand
side~rhs! term# and a stochastic one~second rhs term!. As a
first attempt, one would like to minimize cost function

J~ ā![2
1

M (
k51

M

lnPk
„xobs~ tk11!,tk11…1

1

N (
i 51

N

t i
2 ~5!

in which Pk(x,t) denotes the PDF satisfying Eq.~4! within
time intervaltk,t,tk11 and initial condition

Pk~x,tk!5d„x2xobs~ tk!… ~6!

when no measurement noise is present, or else

Pk~x,tk!5
1

A2pD
expS 2@x2xobs~ tk!#

2

2D D ~7!

with measurement noise of varianceD. This cost function is
clearly related to the logarithm of the maximum likeho
@12# with the proviso that an extra term is added to ten
tively minimize noise amplitudes. Unfortunately, the optim
zation of Eq.~5! is practically impossible except in the sim
plest cases in which the probability density is a kno
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analytical function of parametersā. Numerically, PDF
Pk(x,tk) may be evaluated by generating many realizatio
of the same initial conditionxobs @20#. Such a brute force
method can hardly be put into practice, since it require
considerable number of simulations of Eq.~1!, an intensive
computational effort even for a simple stochastic equati
However, when sampling time intervalT is small compared
to the characteristic correlation time of the stochastic syst
it is possible to get the variances with respect to time. In s
a case, an alternative cost function may be defined base
these ingredients.

III. LINEAR AND WEAKLY NONLINEAR APPROACH

A. Theoretical aspects

When sampling timeT is small enough, variances assoc
ated with Pk(x,tk) remain of weak amplitude. During th
interval tk<t,tk11 , the stochastic orbit, thus, stays close
the deterministic orbitxi

0k defined by

dxi
0k

dt
5Fi~x0k;m1 ,...,mP!, ~8!

with xi
0k(tk)5xi

obs(tk). During the same interval, the stocha
tic variablesy[x2x0k are governed by the Langevin equ
tions

dyi

dt
5Gi~y,x0k;m1 ,...,mP!1t iu i~ t !, ~9!

where

Gi~y,x0k,m1 ,...,mP![Fi~y1x0k;m1 ,...,mP!

2Fi~x0k;m1 ,...,mP!. ~10!

At time tk , the stochastic variablesy[x2x0k verify, in the
absence of the measurement noise, the initial condi
y(tk)50, or else satisfy a Gaussian probability distributi
of varianceD when noise is present. We assume that qu
tities yi remain small during periodtk,t,tk11 . At zeroth
order, Eq.~9! may then be linearized as

dyi

dt
5g i j ~ t !yj1t iu i~ t !, ~11!

where

g i j ~ t !5
]Fi

]xj
„x1

0k~ t !,...,xN
0k~ t !;m1 ,...,mP…. ~12!

Probability density Pl
k(y,t) associated to the linearize

Langevin Eq.~11! approximates the nonlinear onePnl
k (y,t)

[Pk(x0k1y,t) associated to Eq.~9!. However, it is a much
easier quantity to compute since it satisfies a Ornste
Uhlenbeck equation@13,14#

]Pl
k~y,t !

]t
52(

i , j
g i j ~ t !

]

]yi
@yj Pl

k~y,t !#1(
i 51

N

t i
2

]2Pl
k~y,t !

]yi
2

~13!
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IDENTIFICATION METHODS FOR NONLINEAR . . . PHYSICAL REVIEW E 65 031107
with a condition at timetk5kT similar to ad function or a
Gaussian function with zero average. Such an equation
be analytically integrated intk,t,tk11 , the probability
density function remains Gaussian@14# with zero average
and variancess i j (t) governed by

ds i j
k

dt
5Hi j

k ~spq
k !, ~14!

with initial conditionss i j
k (tk)5Dd i j , where

Hi j
k ~spq!5(

n
g in~ t !sn j1(

n
g jn~ t !sni12d i j t i

2. ~15!

Variances that satisfy Eqs.~14! and ~15! are expected to
generically increase in an approximate exponential man
When T becomes large, such an evolution clearly depa
from the dynamics of the fully nonlinear problem. Howev
a better approximation may be found that reintroduces n
linear contributions in a weakly nonlinear phase and th
remains valid for a longer time period. First, the governi
equations for ensemble average^yi& and variancess i j
[^yiyj& @21# are computed in the fully general problem~9!.
The computation of time derivatives of^yi& ands i j leads to
an integral in which appears the partial time derivative of
PDF Pnl

k (y,t). Replacing this time derivative by space d
rivatives using the Fokker-Planck equation, it is read
found, after an integration by parts, that

d^yi&
dt

5(
p

g ip~ t !^yp&1^Ni&, ~16!

ds i j

dt
5(

p
g ip~ t !sp j1(

p
g jp~ t !spi12d i j t i

21^Niyj&

1^Njyi&, ~17!

where functions

Ni[Gi~y,x0k;m1 ,...,mP!2(
m

g im~ t !ym ~18!

denote the purely nonlinear terms contained in functio
Gi(y). To get the above relation, the probability dens
function and its various gradients are assumed to vanis
phase space at infinity. Similar manipulations can be p
formed for higher-order moments, e.g.,^yiyjym&; an infinite
hierarchy is hence defined for the time evolution of over
moments. This situation is akin the one found in isotro
turbulence. Similarly, a hypothesis should be used to cl
the hierarchy. Anad hocGaussian assumption is genera
performed for higher moments in turbulence modeling.
this work, we follow this path though this hypothesis is b
ter justified here. More precisely, forT small enough, we
neglect the nonlinear termsNi and the dynamics is reduce
to Eq. ~14! since the linear equation for^y& is trivially satis-
fied in that case, the average value^y& being initially zero.
For largerT, one may relax this hypothesis by introducin
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the nonlinear contributionsNi in the dynamics, i.e., by using
the exact Eqs.~16! and~17!. However, the exact PDF is now
no more Gaussian, but reads

Pnl~y,t !5PG~y,^y&,s i j !1e~ t !PNG~y,t ! ~19!

wherePG denotes the Gaussian PDF with ensemble aver
and variances ofPnl , PNG(y,t) the normalized non-Gaussia
remaining part ande(t) an amplitude that quantify how fa
the PDF if from being Gaussian. In the linear re´gime e(t) is
precisely zero. More generally an approximation for sm
time may be done to solve the nonlinear Fokker-Planck~see,
for instance, Ref.@14#! in which the Gaussian part is show
to be still the leading order term. It is thus reasonable
assume that, for a larger time period, the Gaussian pa
predominant in its contributions to terms^Ni& or ^Niyj&.
Note that, in Eq.~19!, variables^y&, s i j obviously do not
follow a linear evolution, in particular,̂y& may be different
from zero. In a way, this reasoning is quite similar to the o
employed to derive amplitude equations in the theory of
terministic nonlinear extended systems; one assumes tha
main term has the same space~here the phase space! depen-
dence as in
a general linear evolution but unsteady amplitudes@here
^y&(t), s i j (t)# are governed by nonlinear evolution equ
tions. These amplitude equations are easily derived here
computing ^Ni&, ^Niyj& and ^Njyi& with the approximate
PG(y,^y&,s i j ) rather than the truePnl(y,t). Such contribu-
tions thus become only functions of^y&, s i j . This closes the
hierarchy since everything is now defined in terms of^y&,
s i j . When functionsGi are polynomials or power series i
y, one gets

Ni[(
r ,s

G irs~ t !yrys1~higher-order terms!, ~20!

where coefficients depend on the deterministic orbitx0k(t)
@e.g., G lrs(t) in Eq. ~20! stands here the Hessian ofGl#.
Quantities^Ni&, ^Niyj&, and ^Njyi& may then be expresse
in terms of various moments which, in the Gaussian appro
mation, can ultimately be written in terms of variances a
ensemble averages. For instance, in the Lorenz system~see
Sec. III B!, one has the exact relations

^Ni&5(
r ,s

G irs~ t !s rs , ~21!

^Niyj&1^Njyi&5(
r ,s

G irs~ t !^yrysyj&1(
r ,s

G j rs~ t !^yrysyi&.

~22!

In the weakly nonlinear phase, the contribution of the no
Gaussian part of the PDF of the three-point correlations
neglected, which reads

^~yr2^yr&!~ys2^ys&!~yp2^yp&!&50, ~23!

or equivalently

^yrysyp&5^yr&ssp1^ys&s rp1^yp&s rs22^yr&^ys&^yp&.
~24!
7-3
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FIG. 1. Temporal evolution of variablex1(t)
of the Lorenz system fors510, r 528, b
52.666, andt50 ~dots! or t2540 ~solid line!.
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As for amplitude equations in bifurcation problems, the v
lidity of this weakly nonlinear approximation depends on t
nonlinear system and on the orbit. For supercritical bifur
tions, it is quite appropriate for all times but for subcritic
bifurcations, it is only locally valid. As in bifurcations prob
lems, we do not attempt to define precise theoretical bou
for T. They are clearly dependent on the noise amplitude
well as on the finite time Lyapunov exponents of the det
ministic system related to the Langevin equation we stu
However, a quantitative relation between the maximal sa
pling time T and the amplitude of the noiset i seems diffi-
cult, not to say impossible, to obtain. Practically, given
parametric model, one should play with it to determine h
far one can push this assumption. In the following secti
we did this search for the Lorenz system and we showed
nonlinear effects such as saturation can be obtained in
higher-order approximation.

B. Results of the closure assumption

The above linear and weakly nonlinear approximatio
have been tested on the particular data set produced
stochastic Lorenz system@17#

dx1

dt
5s~x22x1!1tu1~ t !,

dx2

dt
5rx11x22x1x31tu2~ t !,

dx3

dt
52bx31x2x11tu3~ t !,

in which parameterss, r, andb are constant coefficients. W
used this system because it is a paradigmatic example
nonlinear system. In the reconstruction community, or m
generally in the nonlinear system community, much wo
and ideas have been worked out using this system earlie
In this numerical check, coefficients are taken to be equa
03110
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s510, r 528, b52.666 ~caseA! or s519.03, r 57.63, b
53.87 ~caseB! which, respectively, correspond to a chao
and a fixed point re´gime for the Lorenz deterministic system
For most examples, the noise amplitude is taken to bet2

540 ~see Fig. 1!. Moreover, in order to focus on the dynam
cal noise problem, dataS is assumed free of observation
noise (D50). Note that, we tested our original algorithm o
the Lorenz system because it is the paradigmatic exampl
nonlinear dynamics.

The test of the closure assumption is performed as
lows. First, the deterministic orbitx0k(t) @resp. variances
s i j (t)# is obtained by integration of Eq.~8! @resp. linear Eq.
~14! or weakly nonlinear Eqs.~21!–~24!# starting from a
given initial conditionxobs(0). In the second stage,R@1
realizations of the stochastic system~1! are numerically
simulated with the one time-step numerical algorithm e
plained in@18# with a time stepDt50.0001. Using theseR
different values ofxobs(t), an histogram~i.e., a PDF! is ob-
tained that approximatesP(x,t). It is checked that~a! the
integration stepDt is small enough to not affect the PD
results~see Fig. 2!, and ~b! the histogram is well approxi-
mated withR51000 realizations~see Fig. 3!. Once these
numerical checks are done, such a histogram, computed
R55000 realizations is shown on Fig. 4, for two initia
pointsxobs(0) on the ‘‘attractor’’ and two different sampling
timesT50.1 ~solid line! andT50.5 ~dashed line!. The time
necessary for the loss of Gaussianity to occur, depends on
phase space region; it is not surprising and may be cle
related to finite time Lyapunov exponents. Variancess i j (t)
of y(t)5xobs(t)2x0k(t) can also be derived from theR dif-
ferent realizations ofxobs(t) and compared to the predicte
values of the closure assumption. On Figs. 5–8, the varia
of s11(t) with respect to time is shown: solid lines represe
the linear approximation results, dots correspond to the n
linear approximation, averages overR realizations are indi-
cated usingR51000 ~squares! and R55000 ~circles!. As
seen in Figs. 5 and 6, the linear approximation behaves
sonably well for caseA and t2520 ~resp.t2540! until T
7-4
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IDENTIFICATION METHODS FOR NONLINEAR . . . PHYSICAL REVIEW E 65 031107
<0.1 ~resp.T<0.08! while the nonlinear approximation ma
be used for larger time intervals, i.e.,T<0.25 ~resp. T
<0.12!. Even for larger times, the weakly nonlinear a
proach is acceptable. As previously mentioned, the qualit
the approximation depends on the position of the initial c
ditions ~see Fig. 7! as well as on the parameters~see Fig. 8!.
As a conclusion, it is possible to use the linear approximat
for s i j if T is small enough or the weakly nonlinear one f
larger values. Clearly, this latter possibility is also limited
a range of time intervalsT.

FIG. 2. Influence of the discretization time ste
Dt(1022,1023,1024,1025), on the PDF ofx1 computed at timeT
51. Computations were performed forR55000 and for case A,
t2510 and initial conditionx1523.6, x2526.9, x357.9.

FIG. 3. Rescaled histogram of variablex1 computed for
s510, r 528, b52.666, andt2510 and the initial condition
x1523.2, x251.5, x3528.2; for R5300 ~dashed line! R5700
~dot-dashed line!, R51000 ~solid line! realizations.
03110
f
-
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IV. THE IDENTIFICATION METHOD

A. The cost function

In a purely deterministic case, the cost functionJ is often
based on the distance between dataxobs(tk11) and predicted
deterministic orbitx0k(tk11), i.e.,

J~ ā![
1

M (
k51

M

@xobs~ tk11!2x0k~ tk11!#2. ~25!

Contrary to this classical choice, a cost functionJ is intro-
duced here for the Langevin Eqs.~1!, based on the numerica
probability density of the stochastic variableyi(tk11)
5x(tk11)2x0k(tk11). This function contains a deterministi
part through the noise-free solutionx0k(t) as well as a sto-
chastic part through variablesy(t). If T is small enough, the
linear approximation holds and the Gaussian PDFPl

k of the
Ornstein-Uhlenbeck process may be used

J~ ā![2
1

M (
k51

M

ln Pl
k
„xobs~ tk11!2x0k~ tk11!,tk11…

1
1

N (
i 51

N

t i
2. ~26!

A version that is easier to implement and that can be
tended to the weakly nonlinear regime is considered h
Let us first divide the phase space region that contains
observed dataS into U domainsVu (u51,...;U) and denote
by s i j (x,T) the variance computed starting atx and evolving
during a time intervalT. If the numberNu of data points in
Vu is large enough, the averaged variance over the domaiVu

FIG. 4. Histogram of variablex1 computed fors510, r 528,
b52.666, andt2510 usingR55000 data points~a! For the initial
condition x1523.2, x251.5, x3528.2 and timesT50.1 andT
50.5 ~b! For the initial conditionx1523.6,x2526.9,x357.9 and
timesT50.1 andT50.5.
7-5
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FIG. 5. Case A andt2520. Quantitys11(t)
computed, starting from the initial condition o
the attactorx1523.6, x2526.9, x357.9 aver-
aging overR51000 realizations~squares! and
R55000 ~circles!, using the linear approxima
tion ~solid!, and the weakly nonlinear approxima
tion ~dots!.
e

-
as-
E
Vu

s i j ~x,T!P~x,t !dx

E
Vu

P~x,t !dx

~27!

may be replaced by the following discrete term:

1

Nu
(Vu

s i j ~ tk11!, ~28!

in which the symbolVu means that sums are performed ov
all pointsxj

0k(tk) located inVu . Moreover, whenNu is large
enough, the following equality applies:

1

Nu
(Vu

s i j ~ tk11!;
1

Nu
(Vu

@xi
obs~ tk11!2xi

0k~ tk11!#

3@xj
obs~ tk11!2xj

0k~ tk11!#. ~29!
03110
r

Using these constraints, the cost functionJ

J5 (
u51

U

(
i , j

a i j
u Ji j

u ~30!

is introduced where thea i j
u are weight coefficients and

Ji j
u 5S 1

Nu
(Vu

s i j ~ tk11!2
1

Nu
(Vu

@xi
obs~ tk11!2xi

0k~ tk11!#

3@xj
obs~ tk11!2xj

0k~ tk11!# D 2

. ~31!

When dynamical noise amplitudest i are quite small, vari-
ancess i j become negligible and cost function~30! is similar
to a least-squares function~25! used for deterministic equa
tions. When noise amplitudes become large, statistical
pects predominate and a cost function, such as Eq.~25!, is
irrelevant; during time intervalT, variances may significantly
n

-
-

FIG. 6. Case A andt2540. Quantitys11(t)
computed, starting from the initial condition o
the attactorx1523.6, x2526.9, x357.9 aver-
aging overR51000 realizations~squares! and
R55000 ~circles!, using the linear approxima
tion ~solid!, and the weakly nonlinear approxima
tion ~dots!.
7-6
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FIG. 7. Case A andt2540. Quantitys11(t)
computed, starting from the initial conditionx1

528.1, x25210.7, x3522.9, averaging over
R51000 realizations~squares! and R55000
~circles!, using the linear approximation~solid!,
and the weakly nonlinear approximation~dots!.
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change compared to the time variation of the determini
orbit x0k. However, cost function~30! takes this aspect into
account. Note that, if the numberNu is too small—
convergence must be checked case by case by modifying
total number of measurement points, i.e., by using part of
data setS—the constraint onVu is not considered anda i j

u

50 holds~on the reverse case,a i j
u 51!.

B. Optimization algorithm: The simulated annealing

The method of simulated annealing is used to find
global minimum of a given functional just as the cost fun
tion J, which implicitly depends on parameterā through a
set of evolution equations acting as dynamical constrai
Here this technique is applied to minimize cost function~30!
with the constraint that the deterministic orbitx0k(t) satisfies
Eq. ~8! and the weakly nonlinear variances satisfy Eqs.~21!–
~24!. This procedure is an extension of the classical Mo
Carlo method@9,10# since it is based on a probabilist
search of the global minimum. After picking up a rando
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valueā1 and computing the associated cost functionJ1 , the
method consists in iterating three basic steps. Namely
each iterationi, one picks up the specific valueāi 21 of pa-
rameterā, which was computed at the previous iterationi
21. A new guess valueā is obtained stochastically using th
Gaussian random distributionP(ā,i )5(2pf i)

21/2$@2(ā
2āi 21)2#/2f i% wheref i is the so-called temperature param
eter at iterationi. The simulation of Eqs.~8!, ~21!–~24! is
thereafter performed with this new parameterā and the value
of the cost function denoted byJi is obtained as a byproduc
If Ji<Ji 21 then valueāi is set to ā at iteration i. In the
reverse case,āi keeps the value at the previous iteration, i.
āi5āi 21 with a probability 12hi , or elseāi becomes equa
to ā with a probabilityhi . The probability of acceptancehi
is a major ingredient in the simulated annealing proced
and is defined ashi5exp@2(Ji2Ji 21)/f i #. Clearly, the
crucial step of the simulated annealing procedure lies in
choice ofhi or, more precisely, of the temperaturef i at each
iteration i. The simplest evolution has been considered he
FIG. 8. Case B andt2540. Quantitys11(t)
computed, starting from initial conditions
x1523.6, x2526.9, x357.9, averaging over
R51000 realizations~squares! and R55000
~circles!, using the linear approximation~solid!,
and the weakly nonlinear approximation~dots!.
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a linear decrease with iteration indexi. The decrease shoul
be slow enough;f must not evolve faster thanf i
5f0 /ln(i) with f0 . For details of the general method th
reader may see Ref.@9#. Clearly we want here to demonstra
the accuracy of the overall method. As a consequence, w
not try to accelerate the simulated annealing convergenc
using more sophisticated temperature evolutions. In this
per, this method is implemented only for the weakly nonl
ear Eqs.~21! and~22!. It could bea priori employed for the
linear case as well. However a technique requiring less
merical efforts, is presented in the following section for t
linear case; the backpropagation procedure.

C. Optimization algorithm: The backpropagation procedure

For deterministic equations, another iterative meth
known as preconditioned limit memory algorithm~PLMA!
algorithm@7# was used to search for the minimum of a fun
tional as in Eq.~25! with constraints as in Eq.~8!. This
approach, which searches for local minima, is less gen
than the simulated annealing. However it converges m
faster. In this section, a similar method is introduced for
stochastic problem. As for the pure deterministic case, i
again a much faster algorithm than the simulated annea

The PLMA algorithm is a generalized Newton meth
that looks for minima ofJ by computing the gradient an
Hessian ofJ with respect to parameterā. An efficient com-
putation of this latter quantity is, thus, crucial to apply t
PLMA algorithm especially for identification problems th
are generally ill conditioned. For a deterministic system as
Eq. ~8!, this quantity can be obtained by a backpropagat
method. This procedure, known to be quite robust to ob
vational noise, consists in defining a companion determi
tic problem ~the adjoint problem! to system~8!. A unique
simulation of theN so-called backpropagated equations
sufficient to compute the gradient over all parameters
similar procedure proposed here for stochastic equations
poses several assumptions. First time intervalT is assumed
small enough so that the linear Eq.~14! is appropriate for the
evolution of variances and the explicit relation

xj
0k~ t !5xj

obs~ tk!1Fi„x
obs~ tk!;m1 ,...,mP…~ t2tk!, ~32!

instead of Eq.~8!, holds for the deterministic partxj
0k during

tk<t,tk11 . This is understood as follows. For the case
large dynamical noise, variances are changing much m
than the deterministic orbitx0k and hence, Eq.~32! is a good
approximation forx0k. In the reverse case of small dynam
cal noise, our procedure is strictly equivalent to the one tim
step method. The case of an almost deterministic sys
where Eq.~32! is not valid, can be treated by a classic
backpropagation method@5#. As a second approximation, th
first sum in Eq.~31! is approximated bys i j (xu

c ,T), wherexu
c

stands for a point in the neighborhoodVu . This means that
the variance is not changing much with position in the nei
borhoodVu . FunctionJi j

u in Eq. ~31! is now reduced to

Ji j
u ~ ā!5@s i j ~xu

c ,T!2Gi j
u ~T!#2, ~33!

where function
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Gi j
u ~T![

1

Nu
(Vu

@xi
obs~ tk11!2xi

0k~ tk11!#@xj
obs~ tk11!

2xj
0k~ tk11!# ~34!

is explicit in terms of parameterā because of Eq.~32!. On
the contrary, quantitys i j (xu

c ,T) is an implicit function of
parameters via Eq.~14!. All previous approximations may be
removed. In particular, the weakly nonlinear problem may
introduced within the backpropagation method but the s
plicity and efficiency is then lost since the problem wou
then contain nonlocal dependences not only in variab
xi

0k(t) as for the pure deterministic case, but also dep
dences on variancess i j (t). In that instance, the simulate
annealing performs much better. In the simplified setting
scribed above, the number of direct and backpropaga
equations are (N11)N3U. The obvious drawback is
clearly the reduced range of time intervalT where it can be
applied. In this framework, we briefly describe the meth
when it is extended to the case of dynamical noise.

The gradient ofJ(ā) with respect to the various param
eters in ā is actually the sum of the contribution of eac
neighborhoodVu separately. As a consequence, below
consider only one neighborhood. The cost function th
reads

Ju5(
i , j

a i j
u @s i j ~xu

c ,T!2Gi j
u ~T!#2. ~35!

The dependence with respect to parameterā is partly explicit
throughGi j

u (T), partly implicit sinces i j (xu
c ,T) depends on

these parameters through the direct problem~14! and ~32!.
The backpropagation procedure handles this difficulty by
troducing a generalized Lagrangian

L5J1(
i , j

E
t50

T

dtFds i j

dt
2Hi j ~spq!GYi j ~ t !, ~36!

where the multipliersYi j (t) are introduced for 0<t,T and
i, j 51,...,N. Whenx(t) ands i j (t) satisfy the direct problem
~14! and ~32!, one getsJ5L for any choice of multipliers
Yi j (t), for 0<t,T. Moreover,dJ the first-order variation of
the cost function with respect to the variation of paramet
al , then reads

dJ5(
l

]L
]al

dal1E
t50

T

dt(
i , j

]L
]s i j ~ t !

ds i j ~ t !, ~37!

where dal represents the variation of parameteral , and
ds i j (t) the first-order variations of variabless i j (t) with
dal . The first term in Eq.~37! denotes the explicit depen
dence onal while the second concerns the implicit depe
dence that is difficult to compute. Note that a term, such
]L/]Yi j (t), is identically zero whens i j (t) verifies the direct
problem. At this stage the multipliersYi j (t) are still arbitrary.
The backpropagation procedure consists in choosing th
free variables in such a way that
7-8
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(
i , j

]L
]s i j ~ t !

ds i j ~ t !50 ~38!

holds for any allowed variationsds i j (t) @22#. This constraint
defines the backpropagated problem, which is a dynam
system for multipliersYi j (t) solvable backward in time. Fo
details, the reader may see Refs.@5–8#. Integrating this new
dynamical system thus provides the Lagrangian multipli
Yi j (t). When such choice is made forYi j (t), the variation
dJ is then easily computed. Apart from the explicit depe
dence, the implicit part becomes

dJ5(
l

]L
]al

dal ~39!

with

]L
]al

52E
t50

T

dt(
i , j

]Hi , j

]al
Yi j ~ t !. ~40!

The method is thus identical to the one used for the de
ministic case, but it is extended to the stochastic problem
using the deterministic linear Eq.~14! for variances and
avoiding direct use of governing equations. This trick th
allows to use the usual procedure.

V. A TEST CASE: STOCHASTIC LORENZ SYSTEM

The two algorithms have been tested on a stochastic
renz system. Note that the equivalent deterministic sys
may be chaotic or may correspond to a fixed point regim

A. Results of the simulated annealing

We compute the optimal parameters using the simula
annealing procedure within the weakly nonlinear approxim
tion. The input data setS is provided by the integration o
case A with a noise amplitudet2540 and initial conditions
~23.6, 26.9, 7.9!, which is sampled atT50.1. This sam-
pling time corresponds to the interval for which the line
approximation fails while the nonlinear one is still valid~Fig.
6!. When using such a data set of 100 points~respectively,
1000!, the algorithm provides the following best estima
~10.7, 27.1, 2.06! with t2537.54, and respectively~9.8,
28.2, 2.54! with t2540.51. For a larger sampling timeT
50.2 and 1000 measurement points, we still get a ra
acceptable result:~8.0, 25.0, 2.84! with t2543.9. We
checked that these values are slightly dependent on~a! the
initial conditions for the data set@23# and~b! the initial guess
values for the parameters. These results are satisfactory
robust against noise, which is pretty strong in this case. F
thermore, this is to be put in parallel with the results obtain
from the identical data set by a simulated annealing pro
dure that uses the deterministic cost function~25! and the
deterministic equations. In that case the optimal set is fo
to be ~26.75, 39.8, 7.9! with 1000 points, which is far from
the correct values. The method works also for small no
levels: For instance, we used a data set produced by ca
with t251 and obtained with 4000 points and sampling tim
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T51 ~9.88, 27.72, 2.74! andt250.99. The cellsVu are ob-
tained by dividing the phase space220,x,20, 230,y
,30 in five intervals and 0,y,40 in three intervals.

B. Results of backpropagation procedure

Our extended backpropagation approach is first tested
ing a data setS produced by a stochastic Lorenz syste
corresponding to case A with a noise levelt251. Table I
presents a comparison between the identification results
tained by ~i! a purely deterministic backpropagation a
proach, which is a rather robust technique with respec
measurement noise, and~ii ! our stochastic backpropagatio
method. When the data setS is sampled every time period
T50.1, the parameters values are satisfactorily evalua
with the stochastic method for bothM51000 and 4000 mea
surement points. Indeed, the identified values fluctu
around the correct ones. On the contrary, the determin
method does not converge towards the exact quantities w
increasing the number of measurement points.

When the data setS is sampled withT50.4, the deter-
ministic method is far away from the correct value even w
M54000 points. Paradoxically, our method behaves e
better forT50.4 than forT50.1. This can be accounted fo
as follows: forT50.1 and noise amplitudet251, variances
dynamics is dominated by the noise term in Eq.~14!. The
part of the identification method devoted to variances
hence essentially affected by noise amplitude. For a la
sampling timeT50.4, the cost function becomes more se
sitive to the other terms on the rhs of Eq.~14!. Consequently,
the other parameters directly influence the computation
variances. Thus, this improves predictions.

For values of parameterss, R, andb corresponding to a
nonchaotic regime, the two methods provide quite differ
results for the time asymptotic dynamics. For a case in wh
(s510,R520,b52.66) and a noise levelt255, the dynam-
ics may be described as a noisy ‘‘attractor,’’ which has no
ing to do with a fixed point dynamics observed for vanishi
dynamical noise. UsingM51000 measurement points an
sampling timeT50.1, the classical deterministic metho
gives a fixed point dynamics (s57.69,R519.03,b53.87,t

TABLE I. Deterministic/Stochastic method: identified values f
M51000 and 4000 measurement points. Exact values (s510,R
528,b52.66,t51).

Deterministic method
T50.1 (M51000/M54000)

Deterministic method
T50.4 (M54000)

s 7.384/6.986 0.7096
R 26.41/26.46 29.36
b 3.896/3.908 4.253
t

Stochastic method Stochastic method

s 10.12/9.990 9.818
R 28.57/27.45 27.85
b 2.257/3.222 2.678
t 0.979/1.029 1.091
7-9
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50). In the same instance, the stochastic approach prov
a realistic behavior (s510.20,R519.93,b52.55,t54.95)
with a noisy Lorenz attractor.

For larger noise levels, e.g.,t540 and a chaotic regime
(s510,R528, andb52.66!, the deterministic method fails
For M52000 measurement points and a smaller samp
time (T50.001), this deterministic method identifiess
520.76, R516.94, andb58.887, which simulates a fixe
point asymptotic dynamics. On the contrary, the stocha
approach provides the value~9.715, 28.27, 2.587! and t
540.92. For large dynamical noise, the stochastic metho
the only one capable to identify and then reproduce the
rect observations. In these computations, the phase s
220,x,20, in which the dynamics is observed, has be
divided in three intervals,230,y,30 in five and finally
s

m

D

E.

if-

03110
es
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0,y,40 in three. We imposeda i j 50 for iÞ j and for
neighborhoodsVu containing less than 50 points.

C. Conclusion

We have proposed an identification method for stocha
equations. This procedure was tested with a data set
duced with large dynamical noise; correct values were
tained while deterministic based approaches systematic
failed. Note that, most of this discussion needs only a sli
modification to include a multiplicative noise term in Eq.~1!.
A more stringent constraint concerns the assumption that
N variables are his condition is appropriate as a first step
will be in future work.
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